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Abstract. We study theS = 1
2 Heisenberg chain with frustration and alternation which is

expressed byH =∑j {[1+ (−1)j δ]Sj ·Sj+1+ J2Sj ·Sj+2}, both analytically and numerically.
We focus on theJ2 = 0.2411 case, where there is no marginal operator which brings about the
logarithmic corrections in various quantities. By using the bosonization method, we calculate the
energy gap, the change in the ground-state energy due to the alternation (so-called energy gain),
the spin correlation and the string correlation (not only their exponents but also their amplitudes),
and compare them with the results of the numerical diagonalization for finite systems. We point
out the existence of the logarithmic correction in the energy gain despite the absence of the
marginal operator. Taking into account this logarithmic correction, we can obtain a reasonable
hyperscaling relation between the critical exponents of the energy gap and an energy gain from
the numerical data.

1. Introduction

Recently, the ground-state phase transitions due to the quantum effects in low-dimensional
systems have attracted much attention. Let us consider the isotropicS = 1

2 Heisenberg
chain with next-nearest-neighbour interactions expressed by

H0 =
N∑
j=1

{Sj · Sj+1+ J2Sj · Sj+2} (1.1)

which is one of the simplest models of the spin system with frustrations. WhenJ2 = 0,
the ground state of (1.1) is the spin-fluid state [1], which is characterized by the gapless
excitation and the algebraic decay of the spin correlations. WhenJ2 = 1

2, on the other
hand, Majumdar and Ghosh [2] and Majumdar [3] found that the direct products of the
local singlet dimers

91 = [1, 2][3, 4] · · · [N − 1, N ] 92 = [2, 3][4, 5] · · · [N, 1]

[i, j ] ≡ 1√
2

(↑i↓j − ↓i↑j ) (1.2)

are the ground state of (1.1) in case of evenN and the periodic boundary condition.
Therefore the ground-state phase transition from the spin-fluid state to the doubly degenerate
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dimer (DDD) state is expected to be betweenJ2 = 0 and J2 = 1
2 [4]. Okamoto and

Nomura (ON) [5–7] studied this fluid-dimer transition by the numerical diagonalization of
the finite-size Hamiltonian with the help of the bosonization, renormalization group method,
conformal field theory, and the physical insight into how the doubly degenerate state is
realized in infinite systems. They concluded that the critical valueJ2c of the fluid-dimer
transition is

J2c = 0.2411 (1.3)

from the numerical diagonalization data up to 24 spins. They also studied the critical
properties. Their value was confirmed by Castillaet al [8], and Eggert [9].

We can write down the effective Hamiltonian [4–6, 10] for (1.1) after the bosonization
as

H0b =
∫

dx {A(∇θ)2+ CP 2+D cos 2θ} (1.4)

where [θ(x), P (x ′)] = iδ(x − x ′) and the detailed expressions for the coefficientsA, C
andD are shown in section 2. In the spin-fluid region, the term cos 2θ is marginal, which
brings about the logarithmic corrections in various physical quantities [5–7]. In the dimer
region, on the other hand, this term is relevant, which results in the gapful excitation and the
dimer long-range order. ON manifested that this fluid-dimer transition is of the Berezinskii–
Kosterlitz–Thouless type andD = 0 at J2c. Therefore, atJ2c, the effective Hamiltonian
(1.4) is purely Gaussian and the logarithmic corrections vanish. We note thatJ2c and the
Gaussian point do not coincide for the fluid-dimer transition of the models withXY -like
anisotropy, as explained in [6].

Let us introduce the bond alternation

H1 = δ
∑
j

(−1)j+1Sj · Sj+1 δ > 0 (1.5)

to system (1.1). WhenJ2 6 J2c,H1 yields the change in the ground state from the spin-fluid
state to the dimer state. This dimer state is unique (we call it the UD state). ForJ2 > J2c,
the DDD state is resolved byH1 and the ground state is the UD state. The phase diagram
of the systemH0 +H1 is shown in figure 1. The state91 is the true ground state on the
line δ + 2J2 = 1, as shown by Shastry and Sutherland [11].

When J 6 J2c, the critical behaviour of the second-order phase transition can be
observed asδ→ 0. Let us define the energy gap exponentν by

1E(δ) ∼ δν δ→ 0 (1.6)

and the energy gain exponenta by

G(δ) ≡ E0(0)− E0(δ) ∼ δa (1.7)

Figure 1. The ground-state phase diagram ofH0 + H1. The
Majumdar–Ghosh point (δ = 0, J2 = 0.5) is denoted by MG. The
ON point (δ = 0, J2 = 0.2411) is the fluid-dimer transition point
determined by Okamoto and Nomura. The DDD state is realized
on the line between ON and MG points. UD means the unique
dimer state.91 (92) is the unique ground state on the SS line
δ+2J2 = 1 (−δ+2J2 = 1). In this paper we consider the critical
behaviour along the line (a).
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whereE0(δ) is the ground-state energy. These values were analytically calculated asν = 2
3

and a = 4
3 by Cross and Fisher [12], and Nakano and Fukuyama [13] for theJ2 = 0

case. Because these values can be related to theSU(2) symmetry of the Hamiltonian,
they still hold even for the systemH0 +H1 when 06 J2 6 J2c. Black and Emery [14],
however, pointed out1E(δ) ∼ δ2/3/

√| logδ|, of which logarithmic correction comes from
the marginal termD cos 2θ in (1.4). This logarithmic correction explains the fact that the
exponentν obtained from the numerical diagonalization (for theJ2 = 0 case) was somewhat
larger than the predicted value23 [15, 16]. If the logarithmic correction is taken into account
in the analysis of the numerical data, the calculated critical exponentν becomes nearer to
2
3 [17].

At J2c, the above-mentioned logarithmic correction vanishes becauseD = 0.
Thus, the pure power-law behaviour may be observed in1E(δ) as δ → 0. Chitra,
Pati, Krishnamurthy, Sen and Ramasesha (CPKSR) [18] performed the density matrix
renormalization group calculation forH0+H1 atJ2c = 0.2411 to concludeν = 0.667±0.001
and a = 1.251± 0.001. Although their value ofν agreed with 2

3 very well, that ofa
was slightly smaller than the predicted value4

3. If we map the present one-dimensional
quantum system onto the two-dimensional classical system, the energy gain corresponds
to the anomalous part of the free energy associated with the phase transition. Thus, the
exponenta is translated into 2−α in the language of the two-dimensional classical system,
whereα is the exponent of the specific heat. The well known hyperscaling relation

dν = 2− α (1.8)

means

2ν = a (1.9)

in the present quantum one-dimensional notation. Therefore the result of CPKSR violates
the hyperscaling relation, although they did not seem to recognize it. Then we believe that
it is worthwhile making a careful investigation on the various critical behaviours of the
systemH0+H1 at J2c.

We note that the systemH0 + H1 is not only interesting from the standpoint of the
statistical physics, but also important to recognize the properties of existing materials. In
fact, an inorganic spin-Peierls compound CuGeO3 is thought to be well modelled byH0+H1

with δ = 0.03 [8] andJ2 = 0.24∼ 0.36 [8, 19].
This paper is organized as follows. We summarize the analytical prediction on the

critical behaviours of the energy gap, the energy gain, the Néel correlation and the string
correlation by using the bosonized Hamiltonian in section 2. We compare the numerical
results of the exact diagonalization with the analytical predictions in section 3. Finally,
section 4 is devoted to discussion.

2. Analytical predictions

Let us begin with theXXZ version of the model described in section 1 for convenience

H = H0+H1 (2.1)

H0 =
∑
j

{(Sj · Sj+1)1 + J2(Sj · Sj+2)1} (2.2)

H1 = δ
∑
j

(−1)j+1(Sj · Sj+1)1 δ > 0 (2.3)



6290 K Okamoto and T Nakamura

where

(Si · Sj )1 ≡ Sxi Sxj + Syi Syj +1Szi Szj . (2.4)

The bosonized Hamiltonian of (2.2) is of the sine-Gordon form [7]

H0b =
∫

dx {A(∇θ)2+ CP 2+D cos 2θ} (2.5)

where [θ(x), P (x ′)] = iδ(x − x ′) and the coefficients are

A = 1

8π

(
1+ 31

π
+ (6+1)J2

π

)
C = 2π

(
1− 1

π
− (2−1)J2

π

)
D = 1− (2+1)J2

2
.

(2.6)

We take the spin spacing as the unit length. Since these expressions forA, C andD
are reliable only near1 = 0 andJ2 = 0, we cannot correctly obtainJ2c itself from the
bosonized Hamiltonian (2.5). It is widely believed, however, that the critical properties are
well described by the bosonized Hamiltonian.

The renormalization group equations for the sine-Gordon Hamiltonian (2.5) up to the
lowest order are

dy0(l)

dl
= −y2

θ (l)
dyθ (l)

dl
= −yθ (l)y0(l) (2.7)

wherey0(0) andyθ (0) are defined by

y0(0) ≡ g0

πvs
yθ (0) ≡ gθ

πvs
(2.8)

with

K ≡ 1

2π

√
C

A
≡ 1+ g0

2πvs
gθ ≡ 2π2D vs ≡ 2

√
AC. (2.9)

In the spin-fluid region (J 6 J2c), the long-distance asymptotic behaviours of the spin
correlations are governed by the quantityK as

〈Szi Szj 〉 ∼ |i − j |−K 〈S+i S−j 〉 ∼ |i − j |−1/K (2.10)

except for the logarithmic corrections, andvs is the spin wave velocity. The flow diagram
of (2.7) is shown in figure 2. Let us consider the1 = 1 case, on which we will focus.
When 1 = 1 and J 6 J2c, the quantityK should be renormalized to 1 because two
spin correlations of (2.10) exhibit the same behaviour due to the symmetry. Therefore the
starting point of the renormalization,(y0(0), yθ (0)), lies on the fluid-Ńeel boundary line as
far asJ2 < J2c. As J2 increases from 0, the point(y0(0), yθ (0)) moves on this line towards
the origin where the fluid-dimer transition occurs. Thusyθ (0) = 0 (i.e. D = 0) at J2c,
which means that the sine-Gordon Hamiltonian is reduced to Gaussian. The logarithmic
corrections in various physical quantities vanish atJ2c, since they are originated from the
marginal termD cos 2θ in (2.5). We note that the Gaussian point (yθ (0) = 0 orD = 0) and
the fluid-dimer transition point do not coincide for theXY -like case (1 < 1), as explained
in [6].

The bosonized expression of the bond alternation term is [20, 21]

H1b = −
∫

dx

{
δ cosθ + δ1

π
(∇θ)2 cosθ

}
. (2.11)
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Figure 2. The flow diagram of the renormalization equations (2.7)
on they0–yθ plane. The phase boundaries are shown by heavy lines.
When1 = 1, the starting point of the renormalization, A(y0(0), yφ(0)),
lies on the fluid-Ńeel boundary as far asJ2 < J2c.

The δ cosθ term comes from thex and y components of the bond alternation and the
(δ1/π)(∇θ)2 cosθ term from thez component.

Since we focus on the1 = 1 andJ2 = J2c case, our bosonized Hamiltonian is

Hb =
∫

dx

{
vs

4π
(∇θ)2+ πvsP

2− δ cosθ − δ

π
(∇θ)2 cosθ

}
(2.12)

where we have usedK = 1. Since the expressions ofA andC in (2.6) are not exact in
the quantitative sense as already stated, it is not appropriate to use the value ofvs derived
from vs = 2

√
AC with (2.6). Therefore we treatvs as a parameter for a while and later

substitute the numerically calculated data.
Although the renormalization group method is powerful, it is essentially the theory

of the logarithmic accuracy. Because we want to analytically obtain not only the critical
exponents of various physical quantities but also their amplitudes to compare with the
numerical results, we apply the self-consistent harmonic approximation (SCHA) which is
essentially the variational method. We choose the trial Hamiltonian of the SCHA as

HSCHA =
∫

dx
{ vs

4π
(∇θ)2+ πvsP

2+ B̃θ2
}
. (2.13)

Here B̃ is the variational parameter which should be determined by

∂〈Hb〉SCHA

∂B̃
= 0 (2.14)

where〈· · ·〉SCHA denotes the average with respect to the ground state ofHSCHA.
Since the SCHA calculation forHb in (2.12) is described in [13, 21, 22], we summarize

the SCHA results without going into details. The excitation spectrum is

ω(q) = vs

√
q2+ q2

c (2.15)

whereqc is determined by the self-consistent equation

vsq
2
c

4π
= 3δ

4

√
qc

2π
(2.16)

which results in

qc =
(

9π

2v2
s

)1/3

δ2/3. (2.17)

We note that the first factor on the r.h.s. of (2.17) slightly depends on the method to cut
off the short wavelength contribution. The energy gap of the finite system is

1E(δ,N) = ω
( π
N

)
= vs

√( π
N

)2
+ q2

c . (2.18)
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This equation is reduced to formula (3.3) based on the conformal field theory.
The Ńeel correlation function is expressed as [22]

ONeel(j − l) ≡ 〈Szj Szl 〉 = ANeelδ
2/3 sinh{K0(qc|j − l|)} (2.19)

whereK0(x) is the zeroth-order modified Bessel function of the second kind andANeel is
a constant which depends on the short wavelength cut-off. Using the asymptotic behaviour
of K0(x)

K0(x) '
√
π

2x
e−x (x →∞) (2.20)

we can see the exponential decay ofONeel(j − l) as expected. The physical quantity which
characterizes the UD state is the string correlationOUD(j − l) defined by [23]

OUD(j − l) ≡ −4〈Szj exp{iπ(Sz+1
j + Szj+2+ · · · + Szl−1)S

z
l }〉 (2.21)

wherej and l are odd integers. According to [23],OUD(j − l) is calculated as

OUD(j − l) = AUDδ
1/6 exp[K0(qc|j − l|)/4] (2.22)

whereAUD is a cut-off-dependent constant. The long-range order value ofOUD(j − l) as
|j − l| → ∞ is

OUD(∞) = AUDδ
1/6. (2.23)

3. Numerical results

We performed the numerical diagonalization of finite systems up toN = 26 spins under the
periodic boundary condition to find the energies and the Néel and string correlations of the
ground and low-lying excited states.

First we discuss the spin wave velocityvs for δ = 0 case, which is necessary to compare
the numerical and analytical results quantitatively. Since the system is in the spin fluid state
when δ = 0, we can obtain the spin wave velocity from the finite-size correction of the
ground-state energy of theN -spin system with the help of the conformal field theory [24, 25]

E0(0, N) = Nε0(0,∞)− πcvs

6N
+O(N−3) (3.1)

whereε0(δ,N) is the ground-state energy per spin, andc is the conformal charge which is
unity in our problem. The O(N−3) correction comes from the irrelevant operators which
are not included in the sine-Gordon scheme [7]. We note that there is no logN correction
in (3.1) because the marginal operator vanishes atJc2. Analysing the ground-state energy
data by using (3.1) (see figure 3), we obtain

vs = 1.174. (3.2)

Another method to determinevs is to use the formula [26]

1E(N) = πvsK

N
+O(N−3) (3.3)

where1E(N) is the energy gap for theN -spin system andK = 1 in the present case as
was explained in section 2. The origin of O(N−3) is the same as that in (3.1). The spin
wave velocity obtained from the energy gap data (see figure 4) isvs = 1.174, which shows
very good agreement with (3.2).

From (2.18), the finite-size energy gap is written as the finite-size scaling form [27]

δ−2/31E(δ,N) = fgap(Nδ
2/3) (3.4)
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Figure 3. Plot of the ground-state energy per one
spin as a function ofN−2. When we take only the
first and second terms on the r.h.s. of equation (3.1),
E0(0, N)/N = −0.401 95–0.6173N−2 (full curve)
gives the best fit, from which we obtainvs = 1.179.
If we take theN−4 (or higher) term into account,
we obtainvs = 1.174.

Figure 4. Plot of N1E(N) as a function ofN−2.
The equationN1E(N) = 3.6883+ 3.9435N−2 (full
curve) gives the best fit, which results invs = 1.174.
When O(N−4) correction is taken into account, the
valuevs = 1.174 is unchanged.

where

fgap(x) = vs

√
A2

gap+ π2x−2. (3.5)

Although we can easily seeAgap= 2.173 from equations (2.17), (2.18) and (3.2), it depends
on how the short wavelength cut-off is introduced. Thus, we treatAgap as a fitting parameter.
Figure 5 shows the finite-size scaling plot of1E(δ,N). All the points are on the universal
curve, which strongly supportsν = 2

3. When we chooseν = 0.65 or ν = 0.68, we can
clearly observe the scattering of the data points. From the horizontal part of the plot for
largerNδ2/3 we seevsAgap= 2.15, i.e.

Agap= 1.83. (3.6)

The full line represents (3.5) with (3.6), which shows very good agreement with the
numerical data.

The energy gainG(δ,N) for the finite system (N spins) is defined by

G(δ,N) ≡ E0(0, N)− E0(δ,N). (3.7)
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Figure 5. Finite-size scaling plot of1E(N). The
fitting parameterAgap in equation (3.5) can be
determined from horizontal part of the plot.

The reduction of the numerical accuracy is severe forG(δ,N), as is easily seen from its
definition (3.7). Therefore, instead ofG(δ,N) itself, we use

G̃(δ,N) ≡ ∂G(δ,N)

∂δ
= −∂E0(δ,N)

∂δ

= −
〈
∂H
∂δ

〉
= N

2
(〈S1 · S2− S2 · S3〉) (3.8)

where the Feynman’s relation is employed. SinceG̃(δ,N) ∼ δa−1, the finite-size scaling
form of G̃(δ,N) is

δ1−aG̃(δ,N) ∼ f̃gain(Nδ
2/3). (3.9)

Thus, we can determine the exponenta so that the data points ofδ1−aG̃(δ,N) versusNδ2/3

are on the universal curve. The curves (b)–(d) show (3.9) witha = 4
3, 1.29 and 1.25,

respectively. As can be seen from figure 6, the universal fit is unsatisfactory. Namely,
the best fit is observed bya = 1.29 for Nδ2/3 < 10−1, whereas bya = 1.25 for
Nδ2/3 > 100. Thus, unfortunately, we cannot accurately determine the exponenta. Further
the hyperscaling relationa = 2ν is violated whethera = 1.29 or a = 1.25. We have tried
the finite-size scaling plot forG(δ,N) itself for a check to find a similar phenomena.

The above-mentioned poor universality of the scaling plot suggests the existence of
the contribution other than the algebraic one. As was stated in section 2, the logarithmic
correction originated from the marginal term (i.e.D cos 2θ term in (2.5)) is absent in our
case. However, in the alternatingXY chain without next-nearest-neighbour interaction
(1 = J2 = 0 in (2.1)–(2.3)), there exists a logarithmic correction in the energy gainG(δ)

and not in the energy gap1E(δ). Namely, the exact solution of this model [28] leads to
G(δ) ∼ δ2| logδ| and1E(δ) ∼ δ. If we suppose

G(δ) ∼ δa| logδ| (3.10)

the finite-size scaling form of̃G(δ,N) is

δ1−a

1+ p| logδ|G̃(δ,N) = g̃gain(Nδ
2/3) (3.11)

where p is a constant and̃ggain(x) is a scaling function. We have plotted (3.11) with
sweepinga andp, and found that the best universal plot is obtained bya = 4

3 andp = 0.11
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Figure 6. Finite-size scaling plot ofG̃(δ). For (a)
y represents (3.11) witha = 4

3 and p = 0.11, and

for (b)–(d) y represents (3.9) witha = 4
3 , 1.29 and

1.25, respectively. We have shifted each curve along
the vertical axis for clarity. The plot (a) exhibits better
universal fitting than the others.

on the whole region, as shown by figure 6(a). The plot (a) has better universality than the
others. Thus the behaviour (3.10) witha = 4

3 is quite plausible, although we cannot
completely rule out the possibility of the pure power law behaviour. The origin of the
logarithmic correction inG(δ) will be discussed in the next section.

Let us choosej − l = N/2= M for the Ńeel correlation of theN -spin system, because
the periodic boundary condition is imposed. From (2.19) the finite-size scaling form of the
Néel correlation is

MONeel(δ,M) = fNeel(Mδ
2/3) (3.12)

where

fNeel(x) = ANeelx sinh{K0(Agapx)}. (3.13)

Here we useAgap = 1.83 of (3.6) and treatANeel as a fitting parameter, becauseANeel

severely depends on the short wavelength cut-off. Figure 7 shows the finite-size scaling
plot ofMONeel(δ,M) versusMδ2/3. We have tried the plot ofMsONeel(δ,M) versusMδ2/3

arounds = 1 and found thats = 1 exhibits the best universal plot. The full curve shows
(3.6) withANeel= 1.72 which is chosen so that the horizontal part of the curve agree with
the scaling plot. The analytical prediction for the Néel correlation agrees with the numerical
result very well.

For the finite-size string correlation, we also use the value forj − l = N/2= M. From
(2.22) the string correlation scales as

M1/4OUD(δ,M) = fUD(Mδ
2/3) (3.14)

with

fUD(x) = AUDx
1/4 exp{K0(Agapx)/4}. (3.15)

Figure 8 shows the finite-size scaling plot ofN1/4OUD(δ,M) versusMδ2/3. We have
also plottedMµOUD(δ,M) versusMδ2/3 aroundµ = 1

4 for a check and found that the
best universal fit is given byµ = 1

4. Equation (3.15) is shown by the full curve, where
AUD = 0.90 so that the height of the horizontal part of the full curve and the data plot
coincide. In figure 8, the difference between the analytical and numerical results is serious
for Mδ2/3 > 0.1.
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Figure 7. Finite-size scaling plot ofONeel(δ,M).

Figure 8. Finite-size scaling plot ofOUD(δ,M).

4. Discussion

We have investigated the critical behaviours ofH0+H1 for J2 = J2c = 0.2411 andδ→ 0,
both analytically and numerically. For the energy gap and the Néel correlation, the analytical
expressions explain the numerical results very well (not only their critical exponents but
also their amplitudes), although the cut-off-dependent numerical constants in the analytical
expressions are treated as fitting parameters. Unfortunately, on the other hand, the analytical
approach is less successful for the energy gain and the string correlation.

The analysis of the numerical data brings about

G(δ) ∼ δ4/3| logδ| (4.1)

because it provides better finite-size scaling than the pure power-law. Further, this exponent
4
3 is consistent with the hyperscaling relationa = 2ν. Although Chitraet al [18] concluded
ν = 0.667± 0.001 anda = 1.251± 0.001 from their numerical data of DMRG, their
exponents do not satisfy the hyperscaling relationa = 2ν.
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Let us consider the origin of the logarithmic correction in (4.1). In the uniformXY
model without the next-nearest-neighbour interactions, the dispersion relation of the spinless
fermion is

�(k) = cosk (4.2)

which results in the ground-state energy

E0 = N
∫ π/2

−π/2
cosk

dk

2π
= −N

π
. (4.3)

For the uniform Heisenberg model with only nearest-neighbour interactions, the ground-state
energy obtained from the Bethe ansatz is

E0 = −N
4
−N

∫ π

−π
(1− cosk)A(k)dk = −N

(
1

4
− log 2

)
(4.4)

whereA(k) is the density of states of the wavenumberk. The essential part of (4.3) is
similar to (4.2). Although the exact solution for the uniform Heisenberg model with next-
nearest-neighbour interactions is unknown, the ground-state energy may have a form like
(4.3). When the bond alternation is introduced, the gapδ appears and the dispersion relation
of theXY model (4.1) changes into

�(k) =
√

cos2 k + δ2 sin2 k. (4.5)

Since the important contribution of theδ-dependence of the energy gain comes from near
k = π/2, we see

G(δ) ∼
∫ Q

0

√
q2+ δ2

dq

2π
∼ δ2| logδ| (4.6)

whereq = π − k andQ is the upper cut-off. Of course, the integral of�(k) in (4.4) can
be expressed by the elliptic integral of the second kind, which also leads to (4.5). In the
Heisenberg case, the gap isvsqc ∼ δν . Then, if the ‘dispersion relation’ cosk in (4.3) is
replaced by

√
q2+ q2

c nearq = π/2, we can obtain

G(δ) ∼ q2
c | logqc| ∼ δ2ν | logδ|. (4.7)

The excitation spectrum of the bosonized Hamiltonian also suggests the logarithmic
correction inG(δ). Since the variableθ and P in (2.5) describes the boson field, the
ground-state energy is the sum of the zero-point contribution of each mode

1

2

∫ Q

−Q
vs

√
q2+ q2

c
dq

2π
(4.8)

which also brings aboutq2
c | logqc| ∼ δ2ν | logδ|. However, such aδ2ν | logδ| contribution is

just cancelled out in the course of the SCHA calculation. This complete cancellation seems
to be characteristic of the SCHA.

For the string correlation, the analytical expression correctly predicts its critical
exponent, but not its amplitude. As can be seen from (2.21), the string correlation includes
the Sz operators for the spins betweenj and l. In the bosonization theory, theSzj operator
is expressed as the sum of two components, the first is proportional to∇θ (so-calledk ∼ 0
part) and the second to sinθ (k ∼ 2kF part) [22]. In the course of the calculation of
OUD(j − l) [21, 23], only the∇θ part are taken into account. Then we guess that this
fact brings about the difference between analytical and numerical results. We note that the
k ∼ 2kF part is important for the Ńeel correlation [22].
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Recently Brehmeret al [29] reportedν = 0.862 for J2 = 0.15 and ν = 0.795
for J2 = 0.22 by using the extrapolated energy gap data obtained from the numerical
diagonalization. Their analysis was based on the assumption of the simple algebraic
dependence of the gap onδ. They stated that their values ofν was J2-dependent and is
somewhat larger than the predicted valueν = 2

3. This difference comes from the existence
of the logarithmic correction stated in section 1. The influence of the logarithmic correction
becomes smaller asJ2→ J2c, where the logarithmic correction vanishes. Thus, theirν for
J2 = 0.795 becomes nearer to23 than that forJ2 = 0.15.
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[18] Chitra R, Pati S, Krishnamurphy H R, Sen D and Ramasesha R 1995Phys. Rev.B 52 6581
[19] Riera J and Dorby A 1995Phys. Rev.B 51 16 098
[20] Okamoto K, Nishino D and Saika Y 1993J. Phys. Soc. Japan62 2587
[21] Okamoto K 1996J. Phys. A: Math. Gen.29 1639
[22] Okamoto K 1987J. Phys. Soc. Japan56 912
[23] Hida K 1992Phys. Rev.B 46 8268
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